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Abstract-Flow and heat transfer in a porous medium filled with an ideal gas of 100% humidity are 
strongly coupled. The transitions between the conductive and convective regimes can be found by stability 
analysis of the governing equations. A dimensionless Rayleigh number controls the heat and flow regime. 
Stability conditions obtained by perturbation analysis show that the critical Rayleigh number depends 
heavily on the vapor pressure. The moist gas studied here is much less stable than a dry ideal gas, because 

the latent heat carried by a warm moist gas is much greater than the sensible heat. 

INTRODUCTION 

THE ONSET of thermal instability in horizontal layers 
of fluid heated from below is a classical problem and 
has been studied extensively in both pure fluids and 
porous media. The stability of the system can be char- 
acterized mathematically by the numerical value of a 
dimensionless parameter called the Rayleigh number 
[ 11. The theory was applied to liquids in porous media 
by Horton and Rogers [2] and Lapwood [3]. Saatdjian 
[4] and Nield [S] extended the solution to a porous 
medium containing an ideal gas. 

The classical results predict that if the system’s 
Rayleigh number is less than a critical value, con- 
duction will be the only mechanism for heat transfer. 
If the Rayleigh number exceeds its critical number, 
a transition from pure conduction to conduction- 
convection heat transfer will occur. At yet higher Ray- 
leigh numbers, new flow patterns will occur and 
eventually regular flow patterns will disappear and 
the system will enter a chaotic state. 

Coupled heat transfer and fluid flow in unsaturated 
media has been a little known area in the past. Only 

recently has it begun to draw the attention of some 
researchers. Because of the nonlinearity of the govem- 
ing equations, it is a difficult and challenging problem. 
Plumb [6] discussed the modeling of convection in 
unsaturated porous media with and without boiling 

or condensation. The particular problem of drying of 
porous media has been surveyed by Plumb [6] and 
Bories [7]. Tien and Vafai [8] and Nield and Bejan [9] 

provide general reviews of convection in unsaturated 
porous media. 

The purpose of this paper is to examine the onset of 
convective gas flow in an unsaturated porous medium 
containing an ideal gas constrained to remain at 100% 
relative humidity. The humidity constraint is phys- 
ically realistic; unsaturated soils and rocks almost 
always contain some liquid water except very near the 

ground surface, and this water keeps the gas humidity 
close to 100% [lo]. The geometry studied here is an 
infinite horizontal layer heated from below. 

The motivation for this work comes from a study 

of the heat and gas transfer in the geological for- 
mations near a potential nuclear waste repository at 
Yucca Mountain, Nevada, U.S.A. The potential 
repository would be located above the water table in 
partially saturated tuff. Gas fills most of the larger- 
diameter pores and fractures and can move through 
the rock [l 1,121. If nuclear waste is buried at Yucca 
Mountain, it will add a heat source near the bottom 
of a permeable layer. The interactions between heat 
and gas flow under these conditions are the subject of 
much current research [13-l 51. 

Subsurface flow of moist gas also plays a significant 

role in formation of sulfuric acid in mine wastes. Heat 
released by the chemical reaction between oxygen and 
sulfide minerals stimulates convective gas flow, which 
carries in more oxygen to continue the reaction. 

This study examines the onset of convective gas 
flow in an infinite horizontal layer of porous medium 

filled with moist gas by employing a perturbation 
technique. This technique, which is the usual method 

of solving convective instability problems, involves 
three steps. First, we solve the governing equations 
with no fluid flow (static solution). Second, the static 
solution is perturbed slightly in as general a manner 
as possible consistent with the boundary conditions. 

At this step, appropriate dimensionless parameters are 
identified and the perturbation equations are re- 
formulated as an eigenvalue problem. Third, we solve 

this well defined eigenvalue problem to describe the 
evolution of the perturbations with expressions which 
are exponential in time. The sign of the exponent 
determines whether the fluctuations will decay or 
grow, and thus whether the static solution is stable. 
Furthermore, the magnitude of the exponent gives a 
time constant for convective redistribution of heat. 
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NOMENCLATURE 

Supcrsuripts 
I~~~clLlatin~ qu~l~~tity 
din-msionless quantity 

* ii~s~~bi~ity threshold 

-i second instability threshold 

trial solution. 

GOVERNING EQCIATIONS 

Governing equations for heat and gas flow in the 
porous medium studied in this paper are given by 
Amtcr P{ (I/. [16]. They consist of‘ four equations. a 
constitutivc relation. Darcy’s L,aw, a volume bnlancc, 

and an energy balance. as follows : 
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T = T,, W-n=0 

z= 

T=T,+A?,W-n=O 

FIG. 1, Illustration of the Horton-Rogers-Lapwood problem : infinite horizontal porous layer heated from 
below. 

For given initial and boundary conditions, equa- 
tions (l)-(4) can be solved for fields of density p, 
pressure P, temperature T, and gy_ flux q. 

qo = 0, To = T,+ $, 

STATIC SOLUTION 

We consider a classical problem of the onset of 
convective gas flow in a porous medium bounded by 
two horizontal isothermal impermeable planes. This 
problem is analogous to the Rayleigh-BCnard prob- 
lem for a viscous fluid and was solved by Horton and 
Rogers [2] and Lapwood [3] for a porous medium 

df’o 
~=p*~=~~[P,-P”~(l-~)I. dz 

P”0 = P”O(T0). (6) 

Solving the above equations yieIds the solution for 
the distribution of p, : 

containing a slightly compressible fluid (such as liquid 
water). Saatdjian [4] and Nield [5] found the solution 
for a porous medium filled with a non-condensible 

P, =~~~~~-~(*-~~~~ %dT 

ideal gas. with 
The basic equations governing the physical process 

are equations (I-4). The boundary conditions for the @AH 

problem with heating from below are illustrated in CI=RbT. 

Fig. 1 and defined as 

T=T,, P=P,, p=ps, q=O (z=O) 

T=T,+AT, q=O (z=H) (3 

where the subscript s refers to values at the upper 
boundary z = 0 (z points downward) and N is the 
thickness of the porous medium. 

The static solution with no internal heat source in 
which the heat transfer is solely by thermal conduction 
is referred to as the ‘conduction state’ and is a function 
of z only. This solution is denoted by the subscript 
zero. The system is described by the hydrostatic 
equations 

PERTURBATION EQUATIONS 

We now examine the stability of the static solution. 
We expect from the solution of other convective stab- 
ility problems that the static solution will be unstable 
if there is a sufficiently large temperature difference 
across the layer. We consider small two-dimensional 
disturbances to the static solution because instability 
occurs first in two dimensions [ 171. The perturbation 
may be written as 

q = qo+q’ 

P = P,+P’ 



P = 00 +/I’ 

T = T,, + T’. (9) 

Inserting these forms into the system equations (I > 
(4), neglecting all second-order small terms, and sub- 
tracting the static solution yields 

= 0. 

The boundary conditions are 

¶I;= o ,, = 0. T’I, ,,.,, = 0. (14) 

Because all coefficients here are independent of s 
and t, according to the theory of ordinary linear 
differential equations with constant coefficients, the 
solution can be expressed in the form of exponentials 
in the variables x and t. Hence we have 

(P’,p’. T’) = Re [(P(r), b(z), f(z)) e”‘ ’ ‘1 

q’ = Re [(u(z), w(z)) e I, I -+ ,‘I 1 (ISI 

where 1 is the horizontal wavenumber and ;’ the rate 
of increase in the size of fluctuation component with 
wavenumber 1. With the above form of solution. the 
system can be reduced to two equations for the 
unknown vertical flux and temperature : 

i 

A7 
E,, = X 

T,! 

and parameter 

I),, = ?Q=L I p PiOCi II 17). (72) 

Let us discuss the physical effects of these 
coefficients. The quantity A,, reflects the effect of the 
gas compressibility. At low temperature (near the top 
surface). its value is near zero (less compressible). The 
parameter increases monotonically to a value on the 
order of one (more compressible) as the z value tends 
to the bottom boundary. 

The quantity B,, represents the buoyancy force 
driven by sensible heat convection. latent heat con- 
vection, and change of gas volume. It is unity when 
there is no vapor pressure, but it tends to infinity near 
the boiling point. 

The quantity E,, represents the gas density change 
due to the pressure fluctuation. For parameter values 
encountered on Earth it is very small. 

Finally, the quantity F,, reflects the enhancement of 

temperature-caused density change due to the pres- 
ence of vapor. For the temperatures considered in this 
study, it ranges from near 1 (at the upper boundary 
of the system) to teens (near the boiling point). 

It is convenient to nondimensionalize equations 
(16) and (I 7) by introducing 

il.?) 

Equations (16) and (17) then become 

(24) 

with dimensionless ;-dependent coefficients denoted as where the Rayleigh number is defined as 
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Ra = 
gHp,P,Q,c~kAT 

pKtRT,z ’ (26) 

FIRST APPROXIMATION TO SOLUTION 

Equations (24) and (25) are second-order ordinary 
differential equations, and A,, B,, E,, and F, are 
functions of z. As a first approximation, we regard 
the coefficients A,, Bo, E, and F,, as constants. The 
solutions take the form of an exponential of the 
dimensionless depth <, exp (iGX). Here the vertical 
dimensionless wavenumber is denoted as fi. Fur- 
thermore, for H = 6.0 x lo4 cm, E, is less than 0.082 << 
1 .OO and can be neglected compared with the dimen- 
sionless wavenumber. With these assumptions, from 
equations (24) and (25) we have 

(-rii?-6-p)% = B,@ (27) 

(-l)i2-iACCi--~)W = RaPFoB. (28) 

The above two equations together with the bound- 
ary conditions (14) in their dimensionless form define 
an eigenvalue problem for Ra. For a certain wave- 
number ?, a nontrivial solution of the vertical flux and 
temperature exists only for some values of the Ray- 
leigh number. For a system with given values of T,, 
P,, AT, and H, Ra can be defined as a function of 1 
The minimum value of Ra for which there is a non- 
trivial solution is the so-called ‘critical Rayleigh num- 
ber’ for the onset of the convective gas flow in a given 
system. 

The condition for the existence of a nontrivial solu- 
tion of the vertical flux and temperature is that the 
determinant of the coefficients vanishes, and this leads 
to a determination of the dimensionless exponent l? : 

Ruf2B,F, = (~+f+R2)(~*+~*+iA,rii). (29) 

For stability, Re (I?) < 0, which leads to 

Ra < (iz+~*}*+A~~* 

PBoFo 
= F(P, ?fP) (30) 

for all values of iand h. For any given choice of ti, 
F(i*,r+i*) has a minimum at some value of 1 At this 
minimum 

$ Fp,ti2) = 0. 

The solution of this equation gives 

12 = +/(I +(~*/~)Z) 

at which point 

(31) 

(32) 

F= $++.&+(A,,G?)‘)). (33) 

The stability limit is most restrictive when 6 = E, 
which means the requirement of the boundary con- 
ditions at the top and bottom boundaries. The critical 
Rayleigh number at which instability can first 
occur is 

Ra* =: ti - (I+& +fAo/4% 
0 0 

(34) 

For A o = 0, B, = 1 and F. = 1, which corresponds 
to the case where the gas is incompressible and there 
is no vapor pressure in the medium (equivalent to a 
porous medium saturated with water), we recover 
Lapwood’s [3] critical Rayleigh number of 47~‘. 

For a system with AT = 50 K, we have A, = 0.8348, 
B, = 39.68, and F, = 2.10 at the bottom of the layer. 
The critical Rayleigh number is then 0.25. This com- 
pares with 47c2 in a dry, non-condensible ideal gas 
(Nield [5]). Physically, the two-order-of-magnitude 
reduction in critical Rayleigh number reflects the 
destabilizing effect of latent heat transport in the moist 
system. The solution is illustrated using stream- 
function and isotherm in Fig. 2. 

MORE EXACT SOLUTION 

The coefficients Ao, B,, E. and F. which appear in 
equations (24) and (25) are functions of z which can 
be evaluated by equations (18)-(21). We can improve 
the accuracy of our solution by taking the variation 
of these quantities into account instead of approxi- 
mating them by constants. 

The dependence of A,,, Bo, and F. on temperature 
is illustrated in Fig. 3. The coefficients A, and F0 vary 
nearly linearty with the vertical coordinate, but Bo, 
representing the vapor pressure effect, is highly non- 
linear and increases quickly as the vertical coordinate 
increases (corresponding to an increase in tem- 
perature). Because the boundary conditions require 
that there is no temperature perturbation on the top 
and bottom surfaces, we can assume a general solution 
for temperature field in the form of 

0 = C 0, sinjlrc. (35) 

Equations (24) and (25) then can be rewritten as 

~(D+j2rzz +P)O, sinjrri = - B,S (36) 

( $--(Ao+E,)~-%+AoEo-P c 
> 

= RaPF, cOj sin jrc[. (37) 

Now if we insert the form 

(38) 
k 

into equation (37), we have 

( d”;i --(A,+.&)$ - + +A,E,-i* 
> 

W;, 

= F,, sin knc (39) 

which is required to satisfy the boundary condition 

W&]r* 0.t = 0, @Ii= 0, I = 0. WV 
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FIG. 2. (a) Streamlines and (h) isotherms at the onset of convection far constant coeRicients. The crltlcal 
Rayleigh number is 0.25, and its critical wavelength is 3.25. The streamlines show two counterrotating 
convection cells and are plotted for values of the stream function C$ :r exp (--A<) sin (n;) sin ([x/H). The 
isotherms represent the temperature perturbation solution and are N = sin (no cos (ix/H). The isotherms 

reflect only the temperature perturbations due to the gas circulation. 

~~-:::--:r---_l,,,I: { 
0.0 0.2 0.4 1 .o 

Vertical coordinate (dimensionless) 

FIG. 3, The coefficients Ao. BO and Ftr as functions of tem~rature (implicitly in the coordinate :f 

Equation (39) is a second-order ordinary differ- 
ential equation with variable coefficients. To solve for C’l(i) 

the W,, we employ the WKB method, which gives 
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-:~(A,+E,)d;)F,sinkn(d!. (41) 

The coefficients cy and ci can be determined by the 
boundary conditions (40) 

x F0 sin kn[ d[ 
I I 

eivy’(ffdi . (42) 

To solve Ok, we substitute equation (38) into equa- 
tion (36) and obtain 

~(b+j*n’+P)@,sinjn[ = -B,RaP~C&W~. 
I k 

(43) 

From the theory of the Fourier sine series transform, 
we have 

I 
B,W,=c 2 

U 
B, W, sin jn[ d[ 

> 

sin j& (44) 
i 0 

Substituting the above equation into equation (43) 
gives 

C(rT+,i2~‘$P)Oisinjni+2RaPC CO, 
I k i 

X 

(s' 

B, W, sin j$ d[ 
> 

sin j$ = 0. (45) 
0 

Because each term must vanish individually, the 
above equation can also be written as 

f rIj@, = 0 
k=O 

f 

I 

lIjk = (d+j%2+~)&ik+2 RuP B,, W, sin jx[ d[. 
0 

(46) 

A nontrivial solution exists when the determinant 
of the matrix of coefficients IIj, vanishes, i.e. 

IIn,, = 0. (47) 

A first rank solution of the eigenvalue problem will 
be given by setting II, t equal to zero and ignoring all 
the others. This corresponds to the choice of sin nc as 
a trial function for 8. The co~esponding result is 

D'f.rr2+i2+2RaP 
S' 0 
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B, W, sin 711 d[ = 0. (48) 

The critical Rayleigh number is where d = 0, or 

Rae=- , 
79-P _. I__ 

s (49) 

212 B. W, sin n< d[ 
0 

Figure 4 shows the critical Rayleigh number as a 
function of horizontal wave number for different 
values of temperature difference by using equations 
(44) and (49). For a system with a specified tem- 
perature difference, if the Rayleigh number is above 
the critical curve, the system will be unstable and form 
convection cells. Because of the non-linear depen- 
dence of vapor pressure on temperature, the higher 
the temperature difference is, the lower the critical 
Rayleigh number will be. 

When the system’s Rayleigh number is equal to the 
critical Rayleigh number, the system is at the threshold 
of convection. The neutrally stable solution at this 
value is depicted in Fig. 5. The streamfunction is 
solved as Q,, = exp (-&4,,d~) W, sin @x/N). The 
isotherms are obtained as 0, = sin (~4) cos (h/H). 

Comparing Fig. 5 with Fig. 2, we notice that the 
variable coefficient solution has a larger ratio of hori- 
zontal wavelength to vertical wavelength than the con- 
stant coefficient solution and the location of the 
stagnation point is higher. 

By introducing additional terms in the expansion 
for 8, we can obtain a more accurate solution for Ra. 
For the second rank eigenvalue problem, we have 

3.0 

0.0 

FIG. 4. Boundary between stable and unstable Rayieigh 
number as a function of horizontal wave number for four 

values of temperature difference. 
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(b) 

FIG. 5. Streamlines and ,isotherms for a general eigenvalue problem. The streamfunction is 

C/J~ = expj-];,A,,dQW, sin (h/H). and isotherms are 0, sin (n[)cos (&/f-f) 

The above condition gives the critical Rayleigh 
numbers corresponding to the first and the second 

instability modes 

to each other. For example. with a 50 K temperature 
difference and conditions similar to Yucca Mountain 
(see Table I), the critical Rayleigh number for the first 
mode is 0.68 by the first rank, and 0.58 by the second 
rank. The ~av~Iength ratio (vertical to bor~zontal) is 
I .O by the first rank, and 1.12 by the second rank. 
This indicates that the approximations made in the 
calculations lead to relatively small errors. 

As defined in equation (26), a system’s Rayleigh 
number is proportional to the gas permeability of the 
porous medium. For each temperature difference. 

Figure 6 shows the temperature field and stream- 
function corresponding to the second rank eigenvalue 
problem. 

For the Ph rank solution, equation (46) forms a k’” 
rank determinant and can be solved nunleri~al~y to 
obtain the system’s eigenvalues and the corresponding 
eigenfunctions. 

DISCUSSION 

.~~ -_. . 

them exists a critical Rayleigh number as defined by 
equation (49). This critical number also depends on 
other parameters of the system, but less sensitively. 
Table 2 gives critical Rayleigh nutnbcrs for the par- 
ameter values given in Table 1. I I’ AT = CO K, tht 
critical permeability is about 2.1 x IO ’ cm’. and it 
decreases to about 5.1 x 10 ~’ cm if AT = 70 K. The 
latter value falls well within the rangc of gas perme- 
abilities measured at Yucca Mountain [l I]. Appli- 
cations of these results to prediction of heat transfer 
at Yucca Mountain are discussed by Ross et at. [I 51. 

Because it is expected that the higher rank modes Because the heat source at Yucca Mountain will be 

will not pIay as important a role as the lower rank transient, it is important to know how quickly con- 

modes, the above calculations with first- and second- vection will develop. To estimate the time constant 

order should give a good estimate of the stability of for the growth of a fluctuation, we treat the case where 

the system. In fact, by comparing the results of the the Rayleigh number of a system is twice the critical 

first and the second order approximations, we find Rayleigh number. From equation (48), we have 

that the predictions of both the critical Rayleigh 13 = p+tpi’ ‘2: 2~‘. Therefore, the rate of growth of 

numbers and convection cell patterns are very close the perturbation can be estimated as 
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FIG. 6. Streamlines and isotherms for a second rank general eigenvalue problem. (a) The first mode 
streamfunction is #J , = exp (-I: A O dc) W, sin @,x/H), and (b) isotherms are 0, = sin (rtc) cos @,x/H), 
(c) the second mode streamfunction is C#J~ = exp (-]‘, A, d[) W, sin (&x/H), and (d) isotherms are Q2 = 

sin (nc) cos &x/H). 

K,D 4x 1O-3 x2n2 
Y= c;d”k&&(l -n)W = 0.25 x 3.0 x (1-0.1)(6x 104)* 

=4.87x10P”s-’ x 1/975(yr-‘). (52) 

terns indicating the presence of convection cells have 
been observed in a field study [18]. Because the heat 
source is spatially distributed, the mathematical treat- 
ment presented here must be extended [19]. 

This indicates that in a system with a Rayleigh 
number twice the critical value, fluctuations will grow 
by a factor of e every 975 years. 

CONCLUSIONS 

In mine waste piles, the size and temperature differ- In this study, we use the perturbation method to 
ences are smaller than are foreseen at Yucca solve the stability equations analytically for a moist 
Mountain. But the permeability of piles of broken ideal gas heated from below. Dimensionless par- 
rock can be very large, increasing the Rayleigh ameters and coefficients are identified to characterize 
number above the critical value. Because the spatial the stability of the system, and conditions for the onset 
scale is smaller, convection begins much more quickly of convection are obtained. The system must be solved 
than in the Yucca Mountain case. Temperature pat- approximately, but comparison of first- and second- 



Tnblc I Parameters used in the analytic analysis 
.I__. _ _~~~~~~~~~_~..~. _. _, _ __ ~~ 

c.5”‘ 1.4x IO- ’ cd g ’ K ’ 
lli‘i 

1 11 7.5 x 10 -’ cal g- ’ K ’ 
(1 9.Xx IO2 cmL se ’ 
II 6.0 x IO3 cm 
I-1, 5.19 x IO-‘ cal @’ / 
i; IO :. IO 6 cI1.1.‘ 

k’, 4.0x IO i cal K ’ cm ’ s i 
II 3.0 x IO ’ dimensionless 

p, x-xxx IO e cm 1 s ? 

R X.?I-lx I&cm :‘$ *rtroi ‘K i 
I, 3.0 x IO’ K 
AT 40 _ 70 K 

I’ i.XhxlO *gcrn is ” 

/‘S I .o x IO 4 g cm .i 

I’!UCh 3.0 g cm : 
?, 2.9 x 10 g mol ’ 
Q, I.Xx 1Ogmol .g 

. . - . _ 

Table 2. Critical Rayleigh number us a function of the tcm- 
perature di%rence 

AT &I* IIll? 

(K) ( I st mode) (2nd mode) 

40 0.9499 4.0000 
SO 0.57112 2.9271 
60 0.3397 2.1650 
70 0.1792 i .5962 

rank solutions show that the approximations yield 

reasonably accurate sofutions. 
The formula for the critical Rayleigh number for a 

system with 100% humidity is more complicated than 
in a gas without water vapor. The critical Rayleigh 
number depends on both the wavenumber (as in the 
simpler case) and four dimensionless cocflicients A,,, 

B,, E,, and cl,,. Among these dii~lcnsionless quantities, 
B,, reflecting the change of vapor pressure due to 
temperature, has the greatest inff uence on the stability 
of the system. Increase in vapor pressure tends to 
destabilize the system. With tenl~rature differcnccs of 
40 to 70 K, the critical Rayleigh number is about two 
orders of magnitude smaller in a moist system than in 
a dry one. This reflects the greater magnitude of latent 
heat transport compared to sensible heat transport in 
high-temperature convection. 

The results show that convective instabilities can 

occur in systems with properties comparable to those 
occurring in mine-waste piles and at the potential 

nuclear waste repository site at Yucca Mountain. 
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