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Abstract—Flow and heat transfer in a porous medium filled with an ideal gas of 100% humidity are

strongly coupled. The transitions between the conductive and convective regimes can be found by stability

analysis of the governing equations. A dimensionless Rayleigh number controls the heat and flow regime.

Stability conditions obtained by perturbation analysis show that the critical Rayleigh number depends

heavily on the vapor pressure. The moist gas studied here is much less stable than a dry ideal gas, because
the latent heat carried by a warm moist gas is much greater than the sensible heat.

INTRODUCTION

THE ONSET of thermal instability in horizontal layers
of fluid heated from below is a classical problem and
has been studied extensively in both pure fluids and
porous media. The stability of the system can be char-
acterized mathematically by the numerical value of a
dimensionless parameter called the Rayleigh number
[1]. The theory was applied to liquids in porous media
by Horton and Rogers [2] and Lapwood [3]. Saatdjian
[4] and Nield [5] extended the solution to a porous
medium containing an ideal gas.

The classical results predict that if the system’s
Rayleigh number is less than a critical value, con-
duction will be the only mechanism for heat transfer.
If the Rayleigh number exceeds its critical number,
a transition from pure conduction to conduction—
convection heat transfer will occur. At yet higher Ray-
leigh numbers, new flow patterns will occur and
eventually regular flow patterns will disappear and
the system will enter a chaotic state.

Coupled heat transfer and fluid flow in unsaturated
media has been a little known area in the past. Only
recently has it begun to draw the attention of some
researchers. Because of the nonlinearity of the govern-
ing equations, it is a difficult and challenging problem.
Plumb [6] discussed the modeling of convection in
unsaturated porous media with and without boiling
or condensation. The particular problem of drying of
porous media has been surveyed by Plumb [6] and
Bories [7]. Tien and Vafai [8) and Nield and Bejan [9]
provide general reviews of convection in unsaturated
porous media.

The purpose of this paper is to examine the onset of
convective gas flow in an unsaturated porous medium
containing an ideal gas constrained to remain at 100%
relative humidity. The humidity constraint is phys-
ically realistic; unsaturated soils and rocks almost
always contain some liquid water except very near the
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ground surface, and this water keeps the gas humidity
close to 100% [10]. The geometry studied here is an
infinite horizontal layer heated from below.

The motivation for this work comes from a study
of the heat and gas transfer in the geological for-
mations near a potential nuclear waste repository at
Yucca Mountain, Nevada, U.S.A. The potential
repository would be located above the water table in
partially saturated tuff. Gas fills most of the larger-
diameter pores and fractures and can move through
the rock [11, 12]. If nuclear waste is buried at Yucca
Mountain, it will add a heat source near the bottom
of a permeable layer. The interactions between heat
and gas flow under these conditions are the subject of
much current research [13-15].

Subsurface flow of moist gas also plays a significant
role in formation of sulfuric acid in mine wastes. Heat
released by the chemical reaction between oxygen and
sulfide minerals stimulates convective gas flow, which
carries in more oxygen to continue the reaction.

This study examines the onset of convective gas
flow in an infinite horizontal layer of porous medium
filled with moist gas by employing a perturbation
technique. This technique, which is the usual method
of solving convective instability problems, involves
three steps. First, we solve the governing equations
with no fluid flow (static solution). Second, the static
solution is perturbed slightly in as general a manner
as possible consistent with the boundary conditions.
At this step, appropriate dimensionless parameters are
identified and the perturbation equations are re-
formulated as an eigenvalue problem. Third, we solve
this well defined eigenvalue problem to describe the
evolution of the perturbations with expressions which
are exponential in time. The sign of the exponent
determines whether the fluctuations will decay or
grow, and thus whether the static solution is stable.
Furthermore, the magnitude of the exponent gives a
time constant for convective redistribution of heat.
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D, time constant parameter
£y dimensionless coefficient

F function defined by equation (30)
F, dimensionless coefhicient
I function dcfined by equation {41)
g gravitational acceleration [cm s 7]
H thickness of layer [cm]
H,  hcat of vaporization of water [cal g ']
k intrinsic permeability of rock [em-}
K, thermal conductivity of rock
fcal K Tem s Y
! horizontal wave number
e vertical wave number
n porosity [dimensionless]
P gas pressure fgem s 7]
P, definedby P, = P—~P [gem 's 7]
P, vapor pressure of water [gem 's 7]
q gas Aux fem? s ]
R gas constant {gem”s “mol 'K ]
Ra  Rayleigh number
S, internal heat source fcalcm s ']
! time [s]
T absolutc temperature [K]
AT temperature difference between lower

and top boundaries [K]
W solution function of vertical flux

NOMENCLATURE

4,  dimensionless coefficient i dimensionless vertical flux

B, dimensionless coethicient X horizontal coordinate [eml
¢ conversion factor, equal to - vertical coordinate {em] ‘
4.18 % 107 ferg cal '] 7 downward peinting unit vector.
of integral coefficient
c'zm i‘nlc‘gr‘al coefficient o Greek symbols
(‘iu spcnft?c heat of gas [cal g ‘ )K }] o defined by gQ, H/RAT
o) specific heat of rock fcalg ' K '] {ime rate constant
g dimenstonless vertical coordinate
© coefficient of temperature solution :

i} dimensionless temperature

A defined by equation (19)
73 defined by equation (19)

u viscosity of gas [gem s )
I defined by cquation (46)

8 density of gas [g em™ 7

P, density of rock [gem

@ stream function

€, molar weight of dry air [g mol "]
Q molar weight of water [g mol™ ']

Subscripts
0 static solution
s quantity at surface where = =0
Jo & rank or summation indices

I, 2 mode indices.

Supetscripts
’ fluctuating quantity
dimensionless quantity
* instability threshold
T second instability threshold
’ trial solution.

GOVERNING EQUATIONS

Governing equations for heat and gas flow in the
porous medium studied in this paper are given by
Amter e al. [16]. They consist of four equations, a
constitutive relation, Darcy’s Law, a volume balance,
and an cnergy balance. as follows:

l ‘
P = RT(P\Q\"*‘PJQE} “)
k
q= — ,u(VP —g L) 2y

| dp, 1 '
b a.,f)vrw VPVPJ =0 (3)
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KV T—cpq VT + . (1 + 3 )q' VP, +S8,
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rT 4 K” P) ar VT p VI }

- or

= (F =) p {4)
where p is the gas density. R is the gas constant, 7' iy
the temperature, Q, and Q, are the molar weights of
water and dry air, g is the acceleration of gravity, k is
the intrinsic permeability for gas, and z 15 a down-
ward-pointing unit vector. The variable P, is the vapor
pressure of water, which depends only on temperature
because of the assumption of 100% humidity. By
definition, we have P, = P~ P In the ecnergy
equation, K, is the thermal conductivity of the porous
medium. ¢ is a conversion factor of 4.18x 107 erg
cal ', ¥ is the specific heat of gas at constant
pressure, ¢,™ is the specific heat of rock, H, is the
heat of vaporization of water. # is the porosity and S
is an internal heat source.
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T=T,+ 4T, VP-n=0

Fic. 1. llustration of the Horton-Rogers~Lapwood problem : infinite horizontal porous layer heated from
below.

For given initial and boundary conditions, equa-
tions (1)-(4) can be solved for fields of density p,
pressure P, temperature 7, and gag flux q.

STATIC SOLUTION

We consider a classical problem of the onset of
convective gas flow in a porous medium bounded by
two horizontal isothermal impermeable planes. This
problem is analogous to the Rayleigh—Bénard prob-
lem for a viscous fluid and was solved by Horton and
Rogers [2] and Lapwood {3] for a porous medium
containing a slightly compressible fluid (such as liquid
walter). Saatdjian [4] and Nield [5] found the solution
for a porous medium filled with a non-condensible
ideal gas.

The basic equations governing the physical process
are equations (1-4). The boundary conditions for the
problem with heating from below are illustrated in
Fig. 1 and defined as

T=7, P=P, p=p, ¢q=0 (=0
T=T,+AT, q=0 (z=H) (5)

where the subscript s refers to values at the upper
boundary z = 0 (z points downward) and H is the
thickness of the porous medium.

The static solution with no internal heat source in
which the heat transfer is solely by thermal conduction
is referred to as the ‘conduction state’ and is a function
of z only. This solution is denoted by the subscript
zero. The system is described by the hydrostatic
equations

dPO— mgQa Qv
_d_;_pOg"RTO[PO PVO(I Qa s

Py = on(To)~ (6)

Solving the above equations yields the solution for
the distribution of Py

Ty Y Q, T P(T)
P(}:Pq(i)“a(l—ﬁ;)ﬁj;s Tcs«}—ldT (7)

_9Q.H
T RAT

(8

o1

PERTURBATION EQUATIONS

We now examine the stability of the static solution.
We expect from the solution of other convective stab-
ility problems that the static solution will be unstable
if there is a sufficiently large temperature difference
across the layer. We consider small two-dimensional
disturbances to the static solution because instability
occurs first in two dimensions [17]. The perturbation
may be written as

q=q,+q
P=P,+P
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p=potp
T=T,+T. 9)
Inserting these forms into the system equations (1)-

(4), neglecting all second-order small terms, and sub-
tracting the static solution yields

VP + gq’—p’gz =0 (10)
Vq "(]—i-ldp‘ VT, lVPV~0
44 - \Tn P;\O dT|T‘,. v i)a[\ ﬂ,, o
(1n
D s l I)V(J
KV T —q " c8p VT~ - { 1+ - |VP,,
. C P.lﬂ
vaza ( Pv() dP\ Pv()
PR 1 A RN T -
Tk, [ ) arh, VT,
! é
= Cmd‘pmck(l ‘”n) (12)
Qa P/ P/ 1 52\ V
P =R, T T a,)
@1 7P P /1 Q) l_ Q P
RT3|° “’( T Q)| RT,
LT p 7 d.| Polll ) 13)
RT% 0+ 0 dT‘T,] v -Qﬂ v—‘ ( B
The boundary conditions are
Q.0n =0 T'..4u=0. (14)

Because all coefficients here are independent of x
and 1, according to the theory of ordinary linear
differential equations with constant coefficients, the
solution can be expressed in the form of exponentials
in the variables x and ¢. Hence we have

(P'.p".T") = Re[(P(2). (o). T(2)) "]

q = Re[(u(z), w(z)) e=*"] (15

where / is the horizontal wavenumber and 7 the rate
of increase in the size of fluctuation component with
wavenumber /. With the above form of solution, the
system can be reduced to two equations for the
unknown vertical flux and temperature :

(dl Ag+E, d 1 dd, quoﬁF)w

T TH & H&
gPQ. Pk
= ;lR73 Fo 7, (16)
d’ L pCESAT
<Kld_2 —D0_12Kl> 7= p"fpﬁ*—B‘,w (a7

with dimensionless z-dependent coefficients denoted as

AT T, dP,|
Ay = (1 Jo S0y )~ Pog (18}
To PaO aTr T P;m
B, =" - i H f’r") Py,
! £ P\ Pu(l/ dZ
| HAT " Pj dp,, P, dP,
P, ( Tp,) dr TP, dr |
. P, . HQ,P, 09)
Loy =0 Tgas - A /~: = as - B F A TN 2
LS p AT 2 p R(AT)’
AT
Ey=a (20)
Fooe PQTE T«) d{)l }\‘) (/1 Q, PmT;
" PT P dT s, . Q) PTE
(2n
and parameter
Dy = 705 proa L= n). (22)

Let us discuss the physical effects of these
cocfficients. The quantity 4, reflects the effect of the
gas compressibility. At low temperature (near the top
surface), its value is near zero (less compressible). The
parameter increases monotonically to a value on the
order of one (more compressible) as the z value tends
to the bottom boundary.

The quantity B, represents the buoyancy force
driven by sensible heat convection, latent heat con-
vection, and change of gas volume. It is unity when
there is no vapor pressure, but it tends to infinity near
the boiling point.

The quantity £, represents the gas density change
due to the pressure fluctuation. For parameter values
encountered on Earth it is very small.

Finally, the quantity F, reflects the enhancement of
temperature-caused density change due to the pres-
ence of vapor. For the temperatures considered in this
study, it ranges from near 1 (at the upper boundary
of the system) to teens (near the boiling point).

It is convenient to nondimensionalize equations
(16) and (17) by introducing

z . ,()J[(jﬁ"‘“

T=IH (= a° n K w,
gl 5 tP (23)
AT’ K, i
Equations (16) and (17} then become

(i —D—F)U = B, (24)

[ d2 d dd, R P2
(dé’l —(Ao+Ey) g = g AT )w = Ral*F 0
(25)

where the Rayleigh number is defined as
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_ gHp,PQ, B kAT

Ra = (KRT? (26)

FIRST APPROXIMATION TO SOLUTION

Equations (24) and (25) are second-order ordinary
differential equations, and A,, B,, Eg and F, are
functions of z. As a first approximation, we regard
the coeflicients 4,, By, E, and F, as constants. The
solutions take the form of an exponential of the
dimensionless depth {, exp (im). Here the vertical
dimensionless wavenumber is denoted as 7. Fur-
thermore, for H = 6.0 x 10*cm, E is less than 0.082 «
1.00 and can be neglected compared with the dimen-
sionless wavenumber. With these assumptions, from
equations (24) and (25) we have

(~m?—D-~IH8 = B,w
(—1—idgi—0W = Ral*F,f.

@n
28

The above two equations together with the bound-
ary conditions (14) in their dimensionless form define
an eigenvalue problem for Ra. For a certain wave-
number /, a nontrivial solution of the vertical flux and
temperature exists only for some values of the Ray-
leigh number. For a system with given values of T,
P,, AT, and H, Ra can be defined as a function of [.
The minimum value of Ra for which there is a non-
trivial solution is the so-called ‘critical Rayleigh num-
ber’ for the onset of the convective gas flow in a given
system.

The condition for the existence of a nontrivial solu-
tion of the vertical flux and temperature is that the
determinant of the coefficients vanishes, and this leads
to a determination of the dimensionless exponent D

Ral*ByFy = (D+ P +m> (TP +m? +idom).  (29)
For stability, Re (D) < 0, which leads to
IZ =232 A 2.2
Ra < w7y + Agi” = F(I*,m?) (30)

I?ByF,

for all values of [ and 7. For any given choice of 7,
F(I°,m? has a minimum at some value of [ At this
minimum

a
—F(I*,m*) = 0.

o Gh
The solution of this equation gives
P = /(1 +(Ao/)?) 32
at which point
217> >
F=gr (1+/(+(4o/)%). (33)
0+ 0

The stability limit is most restrictive when % = 7,
which means the requirement of the boundary con-
ditions at the top and bottom boundaries. The critical
Rayleigh number at which instability can first
accur 1s

Ra* =

2
2T (L Y+ (Ae/m))).

B.F, (34)

For A, = 0, B, = 1 and F, = 1, which corresponds
to the case where the gas is incompressible and there
is no vapor pressure in the medium (equivalent to a
porous medium saturated with water), we recover
Lapwood’s [3] critical Rayleigh number of 4n°

Forasystem with AT = 50K, wehave 4, = 0.8348,
B, = 39.68, and F, = 2.10 at the bottom of the layer.
The critical Rayleigh number is then 0.25. This com-
pares with 4n? in a dry, non-condensible ideal gas
(Nield [5]). Physically, the two-order-of-magnitude
reduction in critical Rayleigh number reflects the
destabilizing effect of latent heat transport in the moist
system. The solution is illustrated using stream-
function and isotherm in Fig. 2.

MORE EXACT SOLUTION

The coefficients 4,4, By, E; and F,, which appear in
equations (24) and (25) are functions of z which can
be evaluated by equations (18)—(21). We can improve
the accuracy of our solution by taking the variation
of these quantities into account instead of approxi-
mating them by constants.

The dependence of 4,, B,, and F, on temperature
is illustrated in Fig. 3. The coefficients 4, and F, vary
nearly linearly with the vertical coordinate, but B,,
representing the vapor pressure effect, is highly non-
linear and increases quickly as the vertical coordinate
increases (corresponding to an increase in tem-
perature). Because the boundary conditions require
that there is no temperature perturbation on the top
and bottom surfaces, we can assume a genera!l solution
for temperature field in the form of

0 =Y ©,sinjnl. (35)

Equations (24) and (25) then can be rewritten as

Z(ﬁ+j2n2+f2)®j sinjal = —B,w  (36)

d? d d4, _
= Ral’F, Y ©;sinjnl. (37)
7
Now if we insert the form

W= Ral*Y O, W,({) (38)
&

into equation (37), we have
d? d d4
(&? —(o+Eo) gz - "d_co +A0E0—T2) W,

= Fysinkn{ (39)
which is required to satisfy the boundary condition
W&l{m},} =0, VI’I(:Q,I =0.

(40)
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F1G. 2. (1) Streamlines and (b) isotherms at the onset of convection for constant coefficients. The critical

Rayleigh number is 0.25, and its critical wavelength is 3.25. The streamlines show two counterrotating

convection cells and are plotted for values of the stream function ¢ = exp (— A{) sin (r) sin (Ix/H). The

isotherms represent the temperature perturbation solution and are 8 = sin (r{) cos (Ix/H). The isotherms
reflect only the temperature perturbations due to the gas circulation.
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Fi1G. 3. The coefficients 4,, B, and F, as functions of temperature (implicitly in the coordinate =}

Equation (39) is a second-order ordinary differ-
ential equation with variable coefficients. To solve for
the W, we employ the WK B method, which gives

(U2 iAo+ Eab & o o
= D e S o
I d (4—Eo)* .
f=5 g B+ 20 A

o) = C‘H~§J ‘f"”eXP(“j v N dg
0 {

Pl . v 4
-3 J {A4.+Ey) di) Fo sin kn{ d
~ Jo

;o

[ L
ea(() = 3 — j v CXp( LNl
0 N

o

o
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¢
»% L (A0+E0)dC>F0 sinkn{ d. (41)

The coefficients ¢ and ¢J can be determined by the
boundary conditions (40)

%= ——cg=%sinh“(j \/’(f)di){[j frus
o o

< 4
ceno [ Vi ac-] f (ot 5 & )

1
x FO sin kTCC del ef.‘.l‘)\/(f)d{_ [j f~ 14
]

¢ 1 (¢
xexp(—ﬁ ‘/(f)d‘:_iﬁ (Ao+Eo)d§>

% Fy sin knl dZJ el Mf)di}». 42)

To solve ©,, we substitute equation (38) into equa-
tion (36) and obtain

Y (D+j27* +1)0; sinjnl = —By Ral* Y O, W,.
7 k
(43)

From the theory of the Fourier sine series transform,
we have

BW, =Y, (ZJV B, W, sin jr{ dé’) sinjnl.  (44)
b

7

Substituting the above equation into equation {43)
gives

Y (D+j*r?+7%)0;sinjn{+2Ral*y. ¥ O,
i LI

I
X (J By W, sin ja{ d{) sinjnf = 0. (45)
1]

Because each term must vanish individually, the
above equation can also be written as

Y M,0,=0
k=0

i
I, = (D+j*n* +1)6,+2 RafzJA B, W, sin jrl d{.
i

(46)

A nontrivial solution exists when the determinant
of the matrix of coefficients IT;, vanishes, i.e.

[T ] = 0. (47)

A first rank solution of the eigenvalue problem will
be given by setting I1,, equal to zero and ignoring all
the others. This corresponds to the choice of sin n{ as
a trial function for 6. The corresponding result is

]
D+n* 4+ 4 2Ral? f B,W,sinn{d{ =0. (48)
0

The critical Rayleigh number is where D = 0, or

2 72
Rt o

H
22 j B, W, sin 7 df
it

(49

Figure 4 shows the critical Rayleigh number as a
function of horizontal wave number for different
values of temperature difference by using equations
(44) and (49). For a system with a specified tem-
perature difference, if the Rayleigh number is above
the critical curve, the system will be unstable and form
convection cells. Because of the non-linear depen-
dence of vapor pressure on temperature, the higher
the temperature difference is, the lower the critical
Rayleigh number will be.

‘When the system’s Rayleigh number is equal to the
critical Rayleigh number, the system is at the threshold
of convection. The neutrally stable solution at this
value is depicted in Fig. 5. The streamfunction is
solved as ¢, = exp (—[,4,d)W, sin (x/H). The
isotherms are obtained as 6, = sin (n{) cos (Ix/H).

Comparing Fig. 5 with Fig. 2, we notice that the
variable coefficient solution has a larger ratio of hori-
zontal wavelength to vertical wavelength than the con-
stant coefficient solution and the location of the
stagnation point is higher.

By introducing additional terms in the expansion
for @, we can obtain a more accurate solution for Ra.
For the second rank eigenvalue problem, we have

3.0

L

Unstable

[iod
=}

Ltk dede bbb dd 440y

Rayleigh number

o
P

LI B S S B A B m A0 (MR M e At M ke e T e e e

Stable

0.0 — T y 7 y + > T .
0 2 4 & 8

Horizontal wave number

3

FiG. 4. Boundary between stable and unstable Rayleigh
number as a function of horizontal wave number for four
values of temperature difference.



136

Y. ZHANG ¢l al.

EEEEE

Ty

I ] =

G

i1 i FIE ]

2.2

(b)

3.

o

4.2 5.9

5. Streamlines and isotherms for a general eigenvalue problem. The streamfunction is

$, = exp{— [}, 4,d0)W sin (Ix/H), and jsotherms are 0, sin (n0) cos (Ix/H).

FiG.
1‘IH r[ll
nZl HZZ
B }15+n2+r3+2Raf31,1 2Ral*l,,
- 2 Ral*l,, D+dn?+P 42 Ral? ]|
=0
i
I; = j By W, sin jnl d¢. (50)
a

The above condition gives the critical Rayleigh
numbers corresponding to the first and the second
instability modes

Figure 6 shows the temperature field and stream-
function corresponding to the second rank eigenvalue
problem.

For the ™ rank solution, equation (46) forms a k™"
rank determinant and can be solved numerically to
obtain the system’s eigenvalues and the corresponding
eigenfunctions.

DISCUSSION

Because it is expected that the higher rank modes
will not play as important a role as the lower rank
modes, the above calculations with first- and second-
order should give a good estimate of the stability of
the system. In fact, hv r-omna!'mo the results of the
first and the second order approximations, we find
that the predictions of both the critical Rayleigh
numbers and convection cell patterns are very close

_ @)y + @ + T LT (7 + T = G+ P ) 460 + )R + T a000)
4T Jay— '

to each other. For example, with a 50 K temperature
difference and conditions similar to Yucca Mountain
(sec Table 1), the critical Rayleigh number for the first
mode is 0.68 by the first rank, and 0.58 by the second
rank. The wavelength ratio {vertical to horizontal) s
1.0 by the first rank, and 1.12 by the second rank.
This indicates that the dpproximatiom made in the
calculations lead to 1uauvt:1y small ¢rrors,

As defined in equation (26), a system’s Rayleigh
number is proportional to the gas permeability of the
porous medium. For each temperature difference.

1%2121)

there exists a critical Rayleigh number as defined by
equation (49). This critical number also depends on
other parameters of the system, but less sensitively.
Table 2 gives critical Rayleigh numbers for the par-
ameter values given in Table 1. If AT = *0 K. the
critical permeability is dbout 2 I ¥ 1077 em”, and 1t
decreases to about 5.1 x 107 ¥ cm? if AT = 70 K. The

latter value falls well within the range of gas perme-

abilities measured at Yucca Mountain [11]. App i-
cations of these results to prediction of heat transfer
at Yucca Mountain are discussed by Ross ef af. {15].

Because the heat source at Yucca Mountain will be
transient, it is important to know how quickly con-
vection will develop. To estimate the time constant
for the growth of a fluctuation, we treat the case where
the Rayleigh number of a system is twice the critical
Rayleigh numbcr From equation {48), we have
D = ?4+m? ~ 2r* Therefore, the rate of growth of

sedm e £1 an e } P
ine pC( turoauon an ol gbu\uawu as
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F1G. 6. Streamlines and isotherms for a second rank general eigenvalue problem. (a) The first mode

streamfunction is ¢, = exp (—jf)AodC) Wi sin(l,x/H), and (b) isotherms are 6, = sin (z{) cos (/,x/H),

(c) the second mode streamfunction is ¢, = exp (— j'f)Ao d))W,sin (I,x/H), and (d) isotherms are 0, =
sin (n{) cos (I,x/H).

_ KD 4% 1073 x 22
P (= H? ~ 025%3.0x (1—0.1)(6 x 10%)2

=487x10""s ' x 1/975(yr~ ). (52)

This indicates that in a system with a Rayleigh
number twice the critical value, fluctuations will grow
by a factor of e every 975 years.

In mine waste piles, the size and temperature differ-
ences are smaller than are foreseen at Yucca
Mountain. But the permeability of piles of broken
rock can be very large, increasing the Rayleigh
number above the critical value. Because the spatial
scale is smaller, convection begins much more quickly
than in the Yucca Mountain case. Temperature pat-

terns indicating the presence of convection cells have
been observed in a field study [18]. Because the heat
source is spatially distributed, the mathematical treat-
ment presented here must be extended [19].

CONCLUSIONS

In this study, we use the perturbation method to
solve the stability equations analytically for a moist
ideal gas heated from below. Dimensionless par-
ameters and coefficients are identified to characterize
the stability of the system, and conditions for the onset
of convection are obtained. The system must be solved
approximately, but comparison of first- and second-



Table 1. Parameters used in the analytic analysis

i 24x 10" "calg”' K !

o 25x 10 Tealgm ' K!

7, 9.8 x10°cm?s™!

H 6.0x 10% em

H, 5.39% 107 cal g~

& 07~ 10 ‘em’

K, 40x10 ‘calK ‘em ‘s !
n 4.0x 10 ' dimensionless

P, 88Ex 107 gem s’

R 8314107 gem s “mol 'K
T, 34x10°K

AT 40~ 70K

1 1.86x 107 gem te b

P 1LOx10 “gem *°

Proci 30gem

Q, 29x10gmol™’

1.8% 10 g mol™!

Table 2. Critical Rayleigh number as a function of the tem-
perature difference

Rat

AT Ra*

(K} (Ist mode) {2nd mode)
40 0.9499 4.0000
50 0.5782 29272
60 0.3397 2.1650
70 0.1792

1.5962

rank solutions show that the approximations yield
reasonably accurate solutions.

The formula for the critical Rayleigh number for a
system with 100% humidity is more complicated than
in a gas without water vapor. The critical Rayleigh
number depends on both the wavenumber (as in the
simpler case) and four dimensionless cocfficients A,,
By, Eyand F,,. Among these dimensionless quantitics,
B,, reflecting the change of vapor pressure due {o
temperature, has the greatest influence on the stability
of the system. Increase in vapor pressure tends to
destabilize the system. With temperature differences of
40 1o 70 K, the critical Rayleigh number is about two
orders of magnitude smaller in a moist system than in
a dry one. This reflects the greater magnitude of latent
heat transport compared to sensible heat transport in
high-temperature convection.

The results show that convective instabilities can
occur in systems with propertics comparable to those
occurring in mine-waste piles and at the potential
nuclear waste repository site at Yucca Mountain.
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